
Automatic Mitigation of Kernel Rootkits in
Cloud Environments

Jonathan Grimm1, Irfan Ahmed1,
Vassil Roussev1, Manish Bhatt1, and ManPyo Hong2

1 Department of Computer Science, University of New Orleans
Lakefront Campus, 2000 Lakeshore Dr. New Orleans, LA 70122, United States,

jlgrimm1@uno.edu, (irfan, vassil)@cs.uno.edu, mbhatt@my.uno.edu,
2 Graduate School of Information and Communication, Ajou University, South Korea

mphong@ajou.ac.kr

Abstract. In cloud environments, the typical response to a malware
attack is to snapshot and shutdown the virtual machine (VM), and revert
it to a prior state. This approach often leads to service disruption and
loss of availability, which can have much more damaging consequences
than the original attack. Critical evidence needed to understand and
permanently remedy the original vulnerability may also be lost. In this
work, we propose an alternative solution, which seeks to automatically
identify and disable rootkit malware by restoring normal system control
flows. Our approach employs virtual machine introspection (VMI), which
allows a privileged VM to view and manipulate the physical memory of
other VMs with the aid of the hypervisor. This opens up the opportunity
to identify common attacks on the integrity of kernel data structures and
code, and to restore them to their original state.
To produce an automated solution, we monitor a pool of VMs running
the same kernel version to identify kernel invariants, and deviations from
them, and use the observed invariants to restore the normal state of the
kernel. In the process, we automatically handle address space layout
randomization, and are able to protect critical kernel data structures
and all kernel code. We evaluate a proof-of-concept prototype of the
proposed system, called Nixer, against real-world malware samples in
different scenarios. The results show that changes caused by the rootkits
are properly identified and patched at runtime, and that the malware
functionality has been disabled. We were able to repair kernel memory
in all scenarios considered with no impairment of the functionality and
minimal performance impact on the infected VMs.

Keywords: Virtual Machine Introspection, malware, virtualization

1 Introduction

Kernel rootkits compromise the OS kernel to maintain unrestricted access to
system resources including physical memory and disk. They are used by attackers

This work was supported in part by the NSF grant # 1623276

to hide the footprints of their malicious activities on a compromised system, such
as files/folders containing malware executables on disk, or a backdoor process
running in the physical memory to provide unauthorized remote access.

Kernel rootkits use two common techniques for infection: direct kernel object
manipulation (DKOM), and kernel object hooking (KOH). DKOM rootkits sub-
vert the kernel by directly modifying data objects. For instance, the FU rootkit
[18] manipulates doubly linked-list of EPROCESS data structure in Microsoft (MS)
Windows to hide processes. It modifies the data pointers of an EPROCESS node
representing the process to be hidden to delink it from the process list. KOH-
based rootkits hijack the kernel control flow by either modifying function pointers
in kernel objects, or overwriting existing fragment of code with malicious code.
For instance, the basic 6 rootkit [1] changes a function pointer in the system
call table to redirect it to a malicious code that hides files and directories. The
suterusu rootkit [7] modifies the prologues of a target function in the kernel code
in memory with malicious routines, and manipulates CPU registers to disable
the write-protection of kernel code.

The primary focus of this work is KOH attacks, and rootkits that hijack sys-
tem control flow. The major focus of existing solutions is to ensure the integrity
of system control flow such as CFIGuard [23], KCoFI [16], and kBouncer [3].
Unfortunately, they are not accurate, and may fail to prevent an attack on sys-
tem control flow [15]. In any case, their solution is incomplete–if a compromised
system is identified on network, they lack the ability to surgically restore the
known good state of the kernel. Therefore, the typical defensive response is to
remove the system from service, and initiate a full recovery process. This often
induces a period of low, or zero, availability, which is an increasingly unaccept-
able situation.

In this paper, we propose Nixer - a first responder to mitigate an ongoing
rootkit attack on the system control flow while ensuring the continuity of es-
sential operations of the system under attack in order to gain critical time for a
complete defensive response. Nixer is specifically designed for a cloud computing
environment. It runs at a hypervisor (higher privileged) level and operates out-
side the address space controlled by a rootkit thereby, providing leverage against
the rootkit.

To detect a rootkit’s malicious modifications/infections, Nixer utilizes VMI
to access the pool of VMs running same OS kernel in a cloud environment, com-
pares code and invariant data structures within a pool to obtain a baseline, and
identifies any discrepancies in a VM pointing to malicious modifications. The
kernel code (including modules) and invariant data structures (such as the in-
terrupt and system call tables) do not change after they are setup in memory and
are often targeted by rootkit for persistent modifications in system control flow
[18]. The baseline is used to identify the original content, which are then replaced
with modified (malicious) content in an infected VM. The latter step recovers
the normal system control flow and disrupts the execution of malicious code in-
jected by rootkit, apparently disable or halt the rootkit without compromising
service availability, user data and forensic evidence.

The implementation of Nixer is challenging due to address space layout ran-
domization (ASLR). Kernel code (and modules) load into different memory loca-
tions that change the values of same function pointers across VMs within a pool.
Also, the kernel code contains relocatable code having absolute addresses that
make the code different across VMs, and therefore, their cryptographic hash val-
ues do not match. To solve this problem, we employ a cross-comparison based
de-randomization technique to compare kernel code and function pointers (in
kernel data structures) effectively when ASLR is enabled in the VMs.

The rest of the sections are organized as follows: Section 2 describes the
related work. Section 3 presents an overview of the proposed approach, and
challenges and solutions, followed by implementation details in section 4. Section
5 presents the evaluation results. Section 6 discusses implementation decisions
and the limitations followed by a conclusion in section 7.

2 Related work

There are many OS constrained attempts to preserve control flow including CFI-
Guard [23], KCoFI [16], and kBouncer [3]. These techniques have some advan-
tages, no semantic gap and more fine grained activity monitoring, but they all
share a common weakness. They are all potentially vulnerable to the same mal-
ware they are attempting to prevent. This sort of attack has been demonstrated
for PatchGuard [8]. With this in mind we have focused on VMI based solutions,
because they share common benefits and challenges with our approach.

ModChecker [12] and IDTchecker [11] are VMI based solutions to check
the integrity of kernel modules and interrupt descriptor table. ModChecker per-
forms one-to-one comparison of a kernel module across multiple VMs, and is
able to detect code modification attacks such inline hooking, and DLL hooking.
IDTchecker is similar in approach but focuses on checking the integrity of IDT.
It uses pre-defined rules depicting the normal structure of the table to detect any
unusual modifications. ModChecker and IDTchecker are different from Nixer in
that they can only monitor the modules and IDT for any modifications. Nixer
on the other hand, is a proactive solution that changes the state of a VM to mit-
igate a rootkit attack. Nixer also has wider coverage of physical memory that
includes system call table.

HookLocator [10] is a VMI based solution for kernel pool scanning. It lo-
cates function pointers in the kernel pools and reports changes to those function
pointers. It obtains function pointers in a learning phase requiring two VMs or
snapshots with the kernel located at different locations. This gives HookLoca-
tor a list of function pointer values to scan the kernel pools. It then monitors
instances of these values which were shown not to change during their lifetimes
during the learning stage, and reports changes to them. Nixer has no learning
stage, it provides its coverage immediately using a constantly generated base-
line from the VMs that it is guarding, but the areas of coverage of Nixer and
HookLocator do not overlap at all, so different approaches are expected.

Livewire [17] is an intrusion detection system based on VMI. It uses policy
modules to detect malicious activity in monitored VMs. It has a variety of options

including signature scanning, integrity scanning of executables, monitoring of
statistics misreporting. It also monitors attempts to use suspicious functions like
changing memory protections or using raw sockets. Livewire is able to disrupt
attacks based on signatures or activities including IDT and SSDT changes, but
it communicates with the OS to do so. It also suspends the VM when scanning
is required. Nixer is able to stop IDT and SSDT attacks without pausing the
VMs while scanning and does not have any presence inside the VM.

VMWatcher [20] and libGuestfs [4] allow running antivirus tools outside the
VM to scan the disk of a running VM. VMWatcher also demonstrates malware
detection based on differences between in VM and out of VM views of files and
processes. Nixer focuses on preserving the in VM functionality for security tools
rather than enabling them to run outside the VM.

Win et al. [22] apply machine learning techniques specifically Support Vector
Machines to identify malware and rootkits in Linux virtual machines. Their
approach utilize an in-VM monitor to capture events. The monitor is installed
through VMI. This is a completely different approach from Nixer that focuses
on monitoring memory invariants and has no component running inside a VM.

3 Mitigation of Kernel Rootkits

3.1 Problem Statement and Assumptions

Given a pool of virtual machines in a cloud environment, our goal is to recover
the system control flow of a compromised VM (hijacked by a rootkit) without
affecting the availability of services, losing user data, and destroying forensic ev-
idence of rootkit presence in memory. To achieve our goal, we make the following
assumptions about a cloud environment we operate in:

– All the VMs in a pool run the same kernel configuration, including additional
drivers/modules. This assumption is realistic because the VMs are usually
generated from a reference VM to simplify maintenance processes.

– Semantics of kernel data structures are consistent across VMs. Since the
VMs run same code, this assumption must hold true. (Semantics Attacks
such as direct kernel structure manipulation (DKSM) [13] are out of scope
of this work.)

– Pausing VMs for a brief time period is acceptable for recovery. If the pause
is short enough not to disrupt ongoing network connections, it is indistin-
guishable from routine network-induced service stalls.

3.2 Overview of Nixer

Hardware virtualization is the critical mechanism by which resources and work-
loads are managed in cloud environments. It allows full-stack installations (in-
cluding an OS kernel) to be built, cloned, distributed, executed in isolated
environments, paused, resumed, and discarded. In effect, the virtual machine
manager (VMM), or hypervisor, is the new control and resource management
layer, which provides individual VMs with CPU, RAM, storage, and network
resources. The VMM also provides virtual machine introspection (VMI), which

Hardware

Hypervisor

Applications

Operating
System

Privileged VM

VMI
. . .

VM1

Host
Operating

System

Nixer

VM2 VM3 VMn

Fig. 1: Overview of Nixer

allows a privileged VM to examine and modify the current state of a guest VM.
Our proposed solution, Nixer, is designed to take advantage of this capability to
enable the automated recovery from an ongoing rootkit attack.

Figure 1 presents an overview of Nixer. Nixer’s operation consists of three dis-
tinct phases: baselining, anomaly detection, and control flow recovery. In baselin-
ing, the tool utilizes a pool of VMs running the same kernel configuration to
obtain a baseline of normal in-memory content of VMs within the pool. In par-
ticular, it seeks to detect code and invariant data structures as they are the most
common targets of rootkits to intercept the system control flow. The tool uses
a majority-wins approach and considers the VMs that have the same content in
physical memory, and are in the majority to create the baseline, if the content
appear to be different across VMs. This approach allows Nixer to quickly develop
baseline on the fly without the need for offline pre-processing, and the creation
of cryptographic signatures for known-good content. This dynamic adaptation
is particularly valuable when VMs are run at scale and are patched regularly.

During anomaly detection, Nixer compares the established baseline with the
content of VMs in the pool to detect any differences. Since it considers only
invariants, the content must be same unless the VM is compromised by a rootkit
and is currently under attack. Rootkits target invariants for persistent change
in system control flow. During control flow recovery, the system identifies the
original content of the compromised VM, and replaces the modified (malicious)
content with it. It is worth mentioning that the contents may vary across VMs
within a pool due to address space layout randomization (ASLR). However, if
the contents are de-randomized, they must appear same.

3.3 Challenges and Solutions
Recall that the idea behind ASLR is to assign random base addresses on each
execution. This means that, in different VM instances, all the absolute addresses
in the kernel code and data structures will be different. In particular, function
pointers will be different, which makes direct comparison (for the purpose of
baselining) meaningless. Therefore, Nixer performs some pre-processing that
allows the normalization of absolute addresses across VMs.

00000000| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000010| 8b ff 55 8b ec 68 E0 24 CC F8 e8 39 00 00 00 83 ..U..h.$...9....
00000020| c4 04 5d c2 04 00 cc cc cc cc cc cc cc cc cc cc ..].............
00000030| 8b ff 55 8b ec 8b 45 08 c7 40 34 90 24 CC F8 68 ..U...E..@4.$..h
00000040| 00 25 CC F8 e8 0f 00 00 00 83 c4 04 33 c0 5d c2 .%..........3.].
00000050| 08 00 cc cc cc cc cc cc ff 25 84 25 CC F8 cc cc %.%....
00000060| 44 72 69 76 65 72 20 75 6e 6c 6f 61 64 69 6e 67 Driver unloading
00000070| 0a 00 cc cc cc cc cc cc cc cc cc cc cc cc cc cc
00000080| 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 0a 00 Hello, World..

00000000| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000010| 8b ff 55 8b ec 68 E0 C4 D0 F8 e8 39 00 00 00 83 ..U..h.....9....
00000020| c4 04 5d c2 04 00 cc cc cc cc cc cc cc cc cc cc ..].............
00000030| 8b ff 55 8b ec 8b 45 08 c7 40 34 90 C4 D0 F8 68 ..U...E..@4....h
00000040| 00 C5 D0 F8 e8 0f 00 00 00 83 c4 04 33 c0 5d c2 3.].
00000050| 08 00 cc cc cc cc cc cc ff 25 84 C5 D0 F8 cc cc %......
00000060| 44 72 69 76 65 72 20 75 6e 6c 6f 61 64 69 6e 67 Driver unloading
00000070| 0a 00 cc cc cc cc cc cc cc cc cc cc cc cc cc cc
00000080| 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 0a 00 Hello, World..

Base Address in VM2: 0xF8D0C000

Base Address in VM1: 0xF8CC2000

0xF8CC24E0
0xF8CC2490
0xF8CC2500
0xF8CC2584

0xF8D0C4E0 ̶ 0x4A000 = 0xF8CC24E0
0xF8D0C490 ̶ 0x4A000 = 0xF8CC2490
0xF8D0C500 ̶ 0x4A000 = 0xF8CC2500
0xF8D0C584 ̶ 0x4A000 = 0xF8CC2584

Pointer – Offset = De-randomized Pointer at VM2

Offset = Base Address (VM2) – Base Address (VM1)
4A000 = 0xF8D0C000 – 0xF8CC2000
Pointers at VM1

Matched

Fig. 2: De-randomization of the pointers in a Kernel Module. The memory snap-
shots of the module are taken from the two virtual machines VM1 and VM2.

De-randomization of the kernel. Figure 2 presents the impact of ASLR
on two virtual machines VM1 and VM2. Both VMs have a same kernel module
in their physical memory but due to ASLR, they are loaded into two differ-
ent memory locations. The base address for VM1 and VM2 are 0xF8CC2000

and 0xF8D0C000 respectively. Consequently, the four absolute addresses in the
module are different, making it difficult to compare the whole code effectively.

We develop a method to de-randomize the module to a single base-address
α. The method first computes the offset between α and the base address of the
module, and then subtracts the offset from the absolute pointer address to de-
randomize the pointer value. For example, in Figure 2, α is the base address of
VM1’s module, and we want to de-randomize the VM2’s module to α. Let say,
β is the base address of VM2’s module. The offset can be computed as offset
= β - α, where α < β. Furthermore, given n number of absolute addresses in
the module, γ(i) represents an address value. The de-randomized address θ(i)
for γ(i) can be computed as

∀0 < i < n, θ(i) = γ(i)− offset (1)

Computing original values. When Nixer identifies any discrepancies in
a VM, it further figures out the original contents of the VM to replace the
modified (malicious) contents with them. Unfortunately, the original contents
are lost because they are overwritten during a rootkit attack. To recover the

code, if the code does not contain any absolute addresses, then Nixer obtains it
from the baseline as is and patches the VM to recover from the infection.

On the other hand, to recover the data structures and the code containing
absolute addresses, Nixer cannot obtain the original contents from the baseline
because of the ASLR impact. To solve this issue, Nixer computes the original
pointer values and put them back to their correct location. For example, the
missing value is θ, and the base address of kernel module in compromised and
benign VMs are α and β. The value of same pointer in a benign VM is γ. The
missing value θ is computed as

θ = γ − (β − α), where β > α (2)

Furthermore, some data structures may contain pointers to different kernel mod-
ules. Nixer treats each pointer independently as θ. It obtains the address range of
each kernel module and maps the pointer value (in consideration) to its correct
address range in order to find its correct kernel module. The rest of the process
is same as described above to obtain θ value.

Reducing the semantic gap. Nixer gets a raw access to the physical mem-
ory of a VM. That is, it only sees ones and zeroes without any semantic informa-
tion about them. Since it runs outside the VM, it does not have operating system
support running inside the VM to determine the semantics. The existing solu-
tions [19] that reduce the semantic gap automatically are complex. For instance,
they require modifications in hypervisor, and the support of an additional VM.
Since the focus of this paper is not on solving the semantic gap problem, Nixer
reduces the semantic gap manually - a common approach used by many existing
VMI solutions [14] and is sufficient for us to implement a proof of concept tool.
This approach generally requires the knowledge of operating system internals
and some reverse engineering to figure out traversal trees of data structures to
reach the content being monitored and recovered from any rootkit infection.

4 Implementation
Nixer is implemented in C++ and has almost 12,400 lines of code. It utilizes
libVMI [5] for VMI capabilities and opdis [6] for disassembly. LibVMI is a
wrapper library that provides a generic interface to the VMI capabilities of
Xen, QEMU, KVM and allows that same interface to be used on both physical
memory of a live VM and memory dumps.

Nixer is a proof-of concept tool to mitigate rootkit attacks on Windows. In
particular, it covers kernel code (and modules) and two well-known kernel data
structures i.e. Interrupt Descriptor Table (IDT) and System Service Descriptor
Table (SSDT) or system call table. Nixer parses the memory and extracts the
kernel code and data structures. For the code, it finds the base addresses of ker-
nel code and each kernel module by traversing the doubly-linked list of modules.
Each node in the list is represented by the data structure LDR DATA TABLE ENTRY

containing the name and base address of a module. The pointer to the list is
obtained from a system variable PsLoadedModuleList, already populated by lib-
VMI. Nixer further parses kernel code and each module into Portable Executable
(PE) format to extract headers and sections of code and data.

For the kernel data structures, the pointer to IDT is obtained from IDTR

register and KeServiceDescriptorTable system variable points to SSDT. In each
IDT entry, the pointer value consists of the combination of two fields i.e. Offset
and ExtendedOffset. In SSDT table, each entry has ServiceTableBase field
that points to a system call table – an array of pointers to system calls.

Furthermore, Nixer generates a list of patches to apply to each VM within a
pool. The VM is paused for these patches to be applied as we are borrowing pages
from the guest VMs as described above, and Xen will not allow that without
pausing the VM. This is why, we apply all the patches at the end of the scanning
process to minimizing the cost of pausing and resuming VMs.

5 Evaluation
We conducted several experiments using real world malware (containing rootkit
functionalities) to evaluate the mitigation of malware behavior, and the impact
of mitigation on the services (such as web server and antivirus) running on a
compromised VM. Our evaluation results demonstrated improved behavior of in-
VM security and other services. For instance, after identifying and disabling the
rootkit component of a piece of malware, the antivirus service already installed
on the system was able to quickly identify the (previously hidden) infected files.
This section discusses the experimental setup and the details of the experiments.

5.1 Experimental Setup

All experiments are conducted on a workstation with an Intel i7-4770 @ 3.70
GHz and 16 GB of RAM with Fedora 22 and Xen 4.5.3 hypervisor installed.
Virtual machines are created with 512 MB of RAM and 50 GB of disk space on
a LVM volume. We run Windows XP SP2 operating system on the VMs because
the available sample rootkits are known to work on XP systems.

Clones are created using LVM’s copy-on-write snapshots with 20GB allocated
to the clone’s writes. The physical machine is not under CPU or memory pressure
during the experiments. We did not run any unnecessary applications/services
on host machine.

We use real world malware for experiments, and Volatility [9], a memory
forensic framework to obtain independent ground truth and verify our claims.
The memory dumps are taken with libvmi’s dump-memory utility. We use WinXPSP2x86
profile in Volatility with several plugins including idt, ssdt, malfind.

We perform the following procedure to ensure that each experiment is per-
formed in a fresh setup that does not contain any remnants of previous exper-
iments. It starts with taking a snapshot of the booted VM before experiment,
and then make modifications in the VM such as by running malware, debugger
or any other tool, followed by another snapshot of the VM to verify changes.
Nixer is then used to revert the changes, after which, a snapshot of the VM is
taken again to verify that Nixer has mitigated the malicious behavior. Volatility
is used for the verification process.

5.2 Accuracy Evaluation

Initial experiments aim to verify that Nixer does not damage the functional-
ity of running VMs or make unwarranted changes to memory. We start with

one shutdown Windows XP SP2 VM and generate 2 clones. Both clones are
booted. No malware is used for this experiment because some malware creates
instability, and we want to verify the stability of VMs guarded by Nixer with-
out confounding factors. We test the Nixer on two complementary scenarios:
1) when all the VMs in the pool are working normally without going through
any rootkit modifications. This scenario verifies whether Nixer make unwanted
changes in memory. 2) When the prelude of a kernel routine is synthetically
replaced with NOPs by another of our VMI tools to observe whether Nixer can
revert the changes accurately.
Scenario 1 - No Modifications. We use two VMs for this experiment. One is
used as reference for Nixer and other as a target VM to evaluate any modifica-
tions by Nixer. Both the VMs are logged in after boot. The reference VM is left
untouched. The target VM is left idle for 5 minutes to provide it sufficient time
to settle down. We take the memory snapshots of the target VM periodically
and compare one version with it immediate previous version using BinDiff [2].
Some memory changes are observed in the snapshots as expected due to contin-
ued operation but they are not significant, since the VM is idle. We run Nixer to
introspect the VM with the reference VM. Nixer reported making no change as
expected since no malicious modifications are made in the VM. To verify Nixer’s
claim, we also take a snapshot and compare it with the last snapshot of the VM
using BinDiff. Apparently, no change is identified. The experiment is repeated
several times and also with other VMs that concludes that Nixer does not patch
VM unexpectedly.
Scenario 2 - Modifications in a Kernel Routine. We constructed a cus-
tom (malicious) program using our VMI capabilities to replace MS Windows
function prelude with NOPs for the first function in a targeted PE file in memory.
The experiment starts with taking a memory snapshot when the VM is paused.
After the snapshot, We unpause the VM and run our custom (attack) tool, and
then take another memory snapshot and confirmed the changes using BinDiff.
We run Nixer this time to revert the changes, and then take another memory
snapshot to confirm that the memory contents are matched with the original.
This demonstrates that Nixer can effectively identify the (malicious) modifica-
tions in Kernel code and revert them to original state. Nixer uses the reference
VM from last scenario to identify the modifications and original contents.

The experiment is repeated several times with the other VMs with or without
pausing the target VM during scanning. The experimental results conclude that
the code changes have been repaired by Nixer successfully.

5.3 Experiments with Real-world Rootkits

We evaluate Nixer functionality with four malware samples (refer to Table 1)
that specifically target IDT and SSDT.

For IDT hooking, we run Strace Fuzen malware in a freshly cloned VM.
Volatility confirmed IDT entry had changed from 0x8053C651 pointing to
$KiSystemServce as expected to 0xF8A182A0. After running Nixer to fix the
modifications, Volatility confirmed that IDT entry 0x2E was changed back to
the original value.

STrace Fuzen Basic 6 F.gen!Eldorado BackdoorX
.AHUO

IDT/ SSDT IDT SSDT SSDT SSDT

Index Entry 0x2E 0x91 & 0xAD 0x42 0x42

Original Pointer 0x8053C651 0x8056F266 &
0x80608852

0x8056E634 0x8056E634

Pointer Target $KiSystemServce ntsokrnl.exe ntsokrnl.exe ntsokrnl.exe

Infected Pointer 0xF8A182A0 0xF7BA53D0 &
0xF7BDB3D0

0xF7B503D0 0xF7BD43D0

Pointer Target Unknown quadw.sys &
sraslk.sys

objnts.sys quasfd.sys

Patched by Nixer
√ √ √ √

Table 1: Evaluation results of Nixer on real-world malware samples.

For SSDT hooking, we used three malware samples, viz. Basic 6 (from rookit.com)
mirror on github, PcClient.F.gen!Eldorado and BackdoorX.AHUO (from open-
malware.org). Volatility confirmed that these malware samples made changes
in the SSDT entries. For Basic 6, Volatility confirmed that SSDT entries for
NTQueryDirectoryFile (0x91) and NTQuerySystemInformation (0xAD) had
changed. After Nixer was run to revert the changes, Volatility confirmed that
SSDT entries were changed back to the original values. For F.gen!Eldorado,
Volatility confirmed that the SSDT entries for NtDeviceIoControlFile owned
by ntsokrnl.exe was changed to objnts.sys. After running Nixer to revert the
changes, Volatility verified that the changes made by F.gen!Eldorado were
reverted. For BackdoorX.AHUO, Volatility confirmed that the SSDT entries
for NtDeviceIoControlFile owned by ntsokrnl.exe had changed to quasfd.sys.
Moreover, after Nixer was run to revert the changes, Volatility confirmed that
the changes had been successfully reverted to their original values.

Finally, to verify that Nixer recovers the system control flow, we further ex-
perimented with Basic 6 as its source code was available to us to determine
Basic 6’s functionality. Basic 6 was run in our VM using OSR loader. Basic 6
hides files with the name ” root ”. We created files with these names and ran
Basic 6 with OSR loader as before. The files disappeared from Windows Ex-
plorer, dir command run from cmd.exe and other programs as expected. After
Nixer was run, these utilities and program can find these files again, despite OSR
loader still reporting that the Basic 6 kernel module was loaded.

5.4 Improving the Effectiveness of In-VM Programs

We have further tested the Basic 6 rootkit functionality and the impact of Nixer
in two different scenarios: 1) a web server running on a VM when the rootkit
hides some web resources and make them unavailable for users. 2) an antivirus
running on a VM when the rootkit hides some malware files making the antivirus
ineffective to detect them.
Scenario 1 - Web server We install the nginx web server in the target VM
and create few pages for it to serve including an index.html and a root .htm.
These files are accessible remotely from a web browser. When we run the rootkit,
it hides the web server files, making the web server unable to serve them to web

browser request. Now the browser gets an error message, instead of the page.
We use Nixer to detect and revert the changes in SSDT, apparently unhide the
web server files. We observe that the web server is now able to serve the files.
The rootkit, however is still running as kernel module, but its functionality (of
hiding files and folders) is disabled.

Furthermore, we also observed the typical speed of serving the web pages,
which is 5 ms in our setup and it remains 5ms while the VM was being scanned
by Nixer. Even while Basic 6 is being removed, the performance is 25 ms for one
request 18 ms for the next then returned to the normal 5 ms. These empirical
results show that Nixer has successfully recovered the infected VM, and enabled
the web server to serve more pages.
Scenario 2 - Antivirus We install ClamAV in the target VM, and put FU
rootkit in a folder named root that is protected (hidden) by Basic 6. We run
the rootkit on the VM and then, start a scan with ClamAV, which apparently
is not able to detect FU rootkit. We use Nixer to revert the rootkit modifica-
tions, apparently making the hidden rootkit files available to ClamAV. Now the
antivirus is able to detect FU rootkit. The Basic 6 rootkit is still running in the
system. However, it is unable to hide files and folders anymore.

5.5 Performance Evaluation

We executed pairwise comparison in Nixer 100 times to obtain an understanding
of how it would perform in a continuous scanning environment. The average time
for a pairwise comparison was 60.2 ms with 26.9 ms on average being spent in
Nixer’s user code and 23.9 ms system time with virtual machines idle. The CPU
used by Nixer was 98% utilized during execution. The test was repeated with
the VMs loaded to 100% with prime95. The average execution time for the
comparisons was 60 ms with 28.2 ms on average being spent in Nixer’s user code
and 25.1 ms system time with virtual machines loaded. The core used by Nixer
was 98% loaded during execution. The execution time was remarkably similar
regardless of the state of the targeted VMs. The maximum memory used by
Nixer in these 200 runs was 20.1 megabytes of memory. The CPU usage is high,
but Nixer is a normal process running in a protected VM. Nixer’s VM or process
could be throttled to allow for whatever other needs the system has, but it is
obvious Nixer is extremely CPU bound. This is a testament to libVMI and Xen’s
introspection capabilities that Nixer spend very little time waiting.

6 Conclusions and Future work

Nixer mitigates a rootkit infection by restoring system to normal control flow. It
acts as a first responder and enables in-VM security programs to work effectively
in the face of a rootkit attack. Nixer has a small performance penalty and does
not disrupt the availability of essential services.

As part of future work, we will improve the memory coverage of Nixer, utilize
pdb files from WinDbg for accessing a greater number of OS data structures, and
extend it to other hypervisors (qemu, kvm) and other guest operating systems.
For performance optimization, we will parallelize this code to scan more VMs
at once or different structures simultaneously or add event support so we only
scan what is needed when it is changed.

References

1. basic 6 rootkit. https://github.com/bowlofstew/rootkit.com/tree/master/

hoglund/basic_6, 2016.
2. bindiff. https://www.zynamics.com/bindiff.html/, 2016.
3. kbouncer. http://www.cs.columbia.edu/~vpappas/papers/kbouncer.pdf, 2016.
4. libguestfs. http://libguestfs.org/, 2016.
5. libvmi. http://libvmi.com, 2016.
6. Opdis. http://mkfs.github.io/content/opdis/, 2016.
7. Suterusu rootkit. https://github.com/mncoppola/suterusu, 2016.
8. Understanding and defeating windows 8.1 kernel patch protection:.

http://www.nosuchcon.org/talks/2014/D2_01_Andrea_Allievi_Win8.1_

Patch_protections.pdf, 2016.
9. volatility. http://www.volatilityfoundation.org/, 2016.

10. I. Ahmed, G. G. Richard III, A. Zoranic, and V. Roussev. Integrity checking of
function pointers in kernel pools via virtual machine introspection. In Information
Security, pages 3–19. Springer, 2015.

11. I. Ahmed, A. Zoranic, S. Javaid, G. Richard III, and V. Roussev. Rule-based
integrity checking of interrupt descriptor tables in cloud environments. In IFIP
International Conference on Digital Forensics, pages 305–328. Springer, 2013.

12. I. Ahmed, A. Zoranic, S. Javaid, and G. G. Richard III. Modchecker: Kernel
module integrity checking in the cloud environment. In 2012 41st International
Conference on Parallel Processing Workshops, pages 306–313. IEEE, 2012.

13. S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee, and D. Xu.
Dksm: Subverting virtual machine introspection for fun and profit. In Proceedings
of the 29th IEEE Symposium on Reliable Distributed Systems, 2010.

14. E. Bauman, G. Ayoade, and Z. Lin. A survey on hypervisor-based monitor-
ing: Approaches, applications, and evolutions. ACM Computing Surveys (CSUR),
48(1):10, 2015.

15. N. Burow, S. A. Carr, S. Brunthaler, M. Payer, J. Nash, P. Larsen, and M. Franz.
Control-flow integrity: Precision, security, and performance. ACM Computing Sur-
veys, May 2016.

16. J. Criswell, N. Dautenhahn, and V. Adve. Kcofi: Complete control-flow integrity
for commodity operating system kernels. In Proceedings of the IEEE Symposium
on Security and Privacy, 2014.

17. T. Garfinkel, M. Rosenblum, et al. A virtual machine introspection based archi-
tecture for intrusion detection. In NDSS, volume 3, pages 191–206, 2003.

18. G. Hoglund and J. Butler. Rootkits: subverting the Windows kernel. Addison-
Wesley Professional, 2006.

19. B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion. Sok: Introspections on
trust and the semantic gap. In 2014 IEEE Symposium on Security and Privacy,
pages 605–620. IEEE, 2014.

20. X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through vmm-based
out-of-the-box semantic view reconstruction. In Proceedings of the 14th ACM
conference on Computer and communications security, pages 128–138. ACM, 2007.

21. T. Y. Win, H. Tianfield, and Q. Mair. Detection of malware and kernel-level
rootkits in cloud computing environments. In Cyber Security and Cloud Computing
(CSCloud), 2nd IEEE International Conference on, pages 295–300, 2015.

22. P. Yuan, Q. Zeng, and X. Ding. Hardware-assisted fine-grained code-reuse attack
detection. In Proceedings of the Research in Attacks, Intrusions, and Defenses
(RAID), 2015.

https://github.com/bowlofstew/rootkit.com/tree/master/hoglund/basic_6
https://github.com/bowlofstew/rootkit.com/tree/master/hoglund/basic_6
https://www.zynamics.com/bindiff.html/
http://www.cs.columbia.edu/~vpappas/papers/kbouncer.pdf
http://libguestfs.org/
http://libvmi.com
http://mkfs.github.io/content/opdis/
https://github.com/mncoppola/suterusu
http://www.nosuchcon.org/talks/2014/D2_01_Andrea_Allievi_Win8.1_Patch_protections.pdf
http://www.nosuchcon.org/talks/2014/D2_01_Andrea_Allievi_Win8.1_Patch_protections.pdf
http://www.volatilityfoundation.org/

	Automatic Mitigation of Kernel Rootkits in Cloud Environments

